- Given x1 = 1.333, x1∗ = 1.334, x2 = 0.001, x2∗ = 0.002, which approximated value is better? State your reason.
eabs=∣x−x∗∣=∣1.333−1.334∣=0.001e1=∣x∣∣x−x∗∣=∣1.3330.001=0.00075019eabs=∣x−x∗∣=∣0.001−0.002∣=0.001e1=∣x∣∣x−x∗∣=∣1.3330.001=0.00075019
∴ x1 better because
2a)
lnx−1=lnx−lne=ln(ex)
b)
logx−log(x1)=log(x1x)=log(x.1x)=2logxlogx2
c)
f(x)=x−x2−1sinx×x−x2−1x−x2−1=x−x2−1sinx(x+x2−1)=x2−x2+1sinx(x+x2−1)sinx(x+x2−1)
d)
1+x2−1x2×1+x2+11+x2+1=(1+x2+1)−(1)2x2(1+x2+1)==1+x2+1